Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming
نویسندگان
چکیده
Acute myeloid leukemia (AML) cells are highly dependent on glycolytic pathways to generate metabolic energy and support cell growth, hinting at specific, targetable vulnerabilities as potential novel targets for drug development. Elevated levels of NADPH, a central metabolic factor involved in redox reactions, are common in myeloid leukemia cells, but the significance or biochemical basis underlying this increase is unknown. Using a small molecule analog that efficiently inhibits NADPH-producing enzymes, we found that AML cells require NADPH homeostasis for cell growth. We also found that inhibiting NADPH production through knockdown of 6-phosphogluconate dehydrogenase (6PGD) within the pentose phosphate pathway was sufficient to reduce cell growth and lactate production, a measure of metabolic reprogramming. Further, inhibition of 6PGD activity reduced NADH levels and enzymatic activity of the oxidized NADH-dependent sirtuin-1. Targeting 6PGD and NADPH production was sufficient to block growth of AML cell lines resistant to the chemotherapeutics daunorubicin and cytarabine. Importantly, stromal cell-mediated resistance to targeted inhibition of oncogenic FLT3 kinase activity by quizartinib was circumvented by 6PGD knockdown. Overall, these data suggest that the dependency of AML cells on NADPH to permit increased glycolytic flux creates a potential vulnerability of possible therapeutic benefit, since much of the enhanced production of NADPH is dependent on the activity of a single enzyme, 6PGD.
منابع مشابه
SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation
Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferat...
متن کاملEnzyme activities of NADPH-forming metabolic pathways in normal and leukemic leukocytes.
With respect to the enzymes of NADPH-forming metabolic pathways in human leukocytes: (a) Glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase (decarboxylating) were less active in leukocytes (mostly myeloblasts) from eight patients with acute myeloblastic leukemia (I) than in leukocytes (mostly granulocytes) from 16 normal subjects (II). (b) Of the enzymes of the citrate cleavag...
متن کاملThe Antitumoral Activity of Zataria Multiflora Methanolic Extract on Acute Promyelocytic Leukemia Cell Line; NB4
Background & Objective: Zataria multiflora is a plant that belongs to Laminaceae family. It is traditionally believed to have several therapeutic effects. Acute promyelocytic leukemia is a distinct subtype of acute myeloid leukemia with dominancy of promyelocytes in bone marrow and blood stream. The aim of this study is to investigate the anticancer effects of Z. multiflora extract on acute pr...
متن کاملEpigenetic effects of decitabine on acute lymphoblastic and acute promyelocytic leukemia cells
Background: Decitabine (5-aza-2'-deoxycytidine, DAC) is a deoxycytidine analog currently used as an effective drug against myelodysplastic syndromes and acute myeloid leukemia. Although various studies have pointed out the epigenetic effects of this drug, its epigenetic mechanisms in different leukemic cell lines are not specified. In this lab trial study, possible epigenetic effects of decitab...
متن کاملCDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...
متن کامل